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SYMPLECTIC GEOMETRY
AND HILBERT’S FOURTH PROBLEM

J.C. Álvarez Paiva

Abstract

Inspired by Hofer’s definition of a metric on the space of com-
pactly supported Hamiltonian maps on a symplectic manifold, this
paper exhibits an area-length duality between a class of metric
spaces and a class of symplectic manifolds. Using this duality, it is
shown that there is a twistor-like correspondence between Finsler
metrics on RPn whose geodesics are projective lines and a class
of symplectic forms on the Grassmannian of 2-planes in R

n+1.
... es quizá un error suponer que puedan inventarse

metáforas. Las verdaderas, las que formulan ı́ntimas

conexiones entre una imagen y otra, han existido siempre

... .

Jorge Luis Borges.

1. Introduction

Hilbert’s fourth problem ([15, 19]) asks to construct and study all
metrics on R

n such that the straight line segment is the shortest curve
joining two points. Busemann, who called these metrics projective, pro-
posed a geometric construction which is inspiringly simple. Let us say
that a (possibly) signed measure µ on the set of hyperplanes is quasi-
positive if whenever x, y, and z are three non-collinear points, the mea-
sure of the set of hyperplanes that intersect both the segment xy and
the segment yz is strictly positive. Given a quasi-positive measure such
that the set of all hyperplanes passing through a point has measure
zero, we define the distance between two points as the measure of all
hyperplanes intersecting the line segment joining them.

The quasi-positivity of the measure can be reformulated as follows: if
Π is a (two-dimensional) plane in R

n and µ is a signed measure on the
space of hyperplanes, we may define a measure µπ on the space G(Π) of
lines lying on Π by equating the measure of a Borel subset U ⊂ G(Π)
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to the measure of the set of all hyperplanes that intersect Π along a line
belonging to U . The measure µ is quasi-positive if the induced measure
µπ is positive on open sets for any choice of plane Π ⊂ R

n.
This reformulation makes it easy to characterize the Finsler metrics

(see Definition 2.2) that arise from Busemann’s construction. The met-
ric is Finsler if and only if the measure µ is smooth and the induced
(smooth) measure µπ is positive for any choice of plane Π. Moreover,
as was proved by Pogorelov in [23], every projective Finsler metric on
R

n can be constructed in this way (see also [25] and [9] for alternate
presentations).

While it is possible to take Busemann’s construction and Pogorelov’s
theorem as the solution (and the end) of Hilbert’s fourth problem, there
are strong reasons for not doing so. For one, a large number of pro-
jective metrics cannot be constructed by taking positive measures on
the space of hyperplanes and it is not clear how to construct all quasi-
positive measures. A second objection is that Busemann’s construction,
by itself, does not shed much light on the properties of projective met-
rics. Therefore, it is useful to complement the results of Busemann and
Pogorelov with other characterizations of projective metrics that either
yield new explicit examples, or shed more light on the general properties
of these metric spaces.

The main result of this paper is a new characterization of projective
Finsler metrics in terms of a class of symplectic forms on the space of
lines.

Definition 1.1. Following [17], we say that a differential two-form
ω on the space of oriented lines in R

n is admissible if

1) it is closed;
2) the pull-back of ω to the submanifold of all oriented lines passing

through an arbitrary point in R
n is identically zero;

3) it is odd (i.e., if a is the involution than reverses the orientation of
the lines, then a∗ω = −ω).

Let ω be a differential two-form on the space of oriented lines in R
n.

If x and y are two points in R
n and Π is a plane containing them, set

dω(x, y; Π) to be the integral of |ω| over the set of all oriented lines on
Π intersecting the segment xy.

Theorem 1. If ω is an admissible symplectic form, then the function
dω is independent of the choice of 2-dimensional subspace and defines
a projective Finsler metric on R

n. Moreover, any projective Finsler
metric can be obtained from this construction.
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The usefulness of this new characterization is threefold: together with
a detailed analysis of Crofton-type formulas, it allows us to extend the
classical Crofton formulas to all projective Finsler spaces ([7, 8]); it
uncovers the relation between Hilbert’s fourth problem and the “black
and white” twistor theory of Guillemin and Sternberg ([18, 3]); and it
opens the way for symplectic and contact techniques à l’Arnold in the
study of submanifolds in projective Finsler spaces ([4]).

Theorem 1, first announced in [9], is a relatively easy consequence of
the following symplectic result.

Theorem 2. Let ω be an admissible two-form on the space of oriented
lines in R

n, n > 2. The form ω is symplectic if and only if for every
plane Π ⊂ R

n, the pull-back of ω to the (two-dimensional ) submanifold
of all oriented lines lying on Π never vanishes.

When n = 3, the above result has a simple topological proof (see
[3]). Unfortunately, this proof completely breaks down for n > 3. The
present proof of Theorem 2 relies on a certain duality between metric
and symplectic geometry which extends Arnold’s area-length duality for
spherical curves (see [10]). Curiously enough, the area-length duality
by itself almost provides an independent proof of Theorem 1. However,
a priori, the metrics obtained through the construction in Section 4
are not Finsler metrics, but just G-space metrics in the sense of Buse-
mann [16]. On the other hand, the construction is a very general crite-
rion for the metrization of path geometries that is interesting in its own
right.

Let M be an n-dimensional manifold together with a prescribed sys-
tem of smooth curves, called paths, such that through every point and
every direction there is a unique path passing through this point in the
given direction. Such a geometric structure is called a path geometry on
M . A path geometry is tame if it satisfies the following two properties:

1) any two distinct points in M that are sufficiently close determine
a unique path;

2) the system of oriented curves on M obtained from the path geom-
etry by providing each curve with its two possible orientations is
parameterized by a smooth 2n − 2 dimensional manifold Γ.

Note that, in turn, the manifold M parameterizes a system of sub-
manifolds in the parameter space Γ: to each x ∈ M , we associate the
submanifold x̂ of all paths passing through x. When the path geometry
is the system of geodesics of a Finsler metric on M , it is known (see
[2], [13] and Section 2) that the space of geodesics carries a natural
symplectic form and that the submanifolds x̂, x ∈ M , are Lagrangian.
In Section 4, the reader will find the following partial converse:
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Theorem 3. Let M be smooth manifold of dimension greater than
two endowed with a tame path geometry and let Γ denote its parameter
space. If there exists a symplectic form on Γ such that the submanifold
of all paths passing through an arbitrary point in M is Lagrangian, then
M can be given a G-space metric such the path geometry coincides with
the system of geodesics in M .

Roughly, the idea of the proof is to consider the map x �→ x̂ as an
embedding of M into the space of all Lagrangian submanifolds of Γ and
use the Hofer metric ([20], [21], and [22]) in this infinite-dimensional
space to induce a metric in M . More precisely, infinitesimal Hamil-
tonian deformations of a Lagrangian submanifold L in the symplectic
manifold (Γ, ω) are described as the quotient of all smooth functions on
L by those that are constant. This space, C∞(L)/constants, carries the
infinitesimal Hofer norm

‖f‖ = variation(f) = max f − min f.

Since the family of Lagrangian spheres x̂, x ∈ M , induces canonical
linear maps

TxM −→ C∞(x̂)/constants,

we can pull-back the Hofer norm to TxM . This gives us, a priori, a
low-regularity version of a Finsler structure on M . Actually, in order to
avoid technical difficulties (e.g., it is not known when a low-regularity
Finsler metric on a manifold M gives rise to a G-space structure) and
to make the proof more accessible to metric and Finsler geometers,
Section 4 presents an integrated version of the above construction that
makes no explicit use of the Hofer metric.

The breakdown of the paper — and the global structure of the proof
of Theorem 1 — is as follows: Section 2 is a short review of Finsler
manifolds and their spaces of geodesics that ends with a proof of the
(easy) second part of Theorem 1. In Section 3, it is shown that the first
part of Theorem 1 follows from Theorem 2 and the work of Pogorelov
([23]) on Hilbert’s fourth problem in two-dimensions.

Section 4 contains the proofs of Theorem 3 and of the following weaker
version of Theorem 2:

Theorem 4. If ω is an admissible symplectic form on the space of
oriented lines in R

n, n > 2, then for every plane Π ⊂ R
n the pull-back

of ω to the (two-dimensional ) submanifold of all oriented lines lying on
Π never changes sign, nor vanishes on an open subset.

In Section 5, Theorem 4 and a detailed analysis of the generalized
conformal structure on the Grassmannian of oriented planes in R

n+1,
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n > 2, are used to prove Theorem 2, thus completing the proof of our
main result.

2. Finsler manifolds and spaces of geodesics

A Finsler manifold is a manifold together with the choice of a norm
on each tangent space. The precise definition requires us to restrict the
class of norms to those where the unit sphere is smooth and quadrati-
cally convex : the principal curvatures are positive for some (and there-
fore any) auxiliary Euclidean structure. These norms are intrinsically
defined as follows:

Definition 2.1. A norm on a vector space V is said to be a Minkowski
norm if the unit sphere in V and its polar in V ∗ are smooth. A finite-
dimensional vector space provided with a Minkowski norm will be called
a Minkowski space.

Definition 2.2. A Finsler metric on a smooth manifold M is a con-
tinuous function on its tangent bundle that is smooth outside the zero-
section and such that its restriction to each tangent space is a Minkowski
norm.

Given a Finsler metric ϕ on a manifold M , the length of a smooth
curve γ : [a, b] → M is defined by the equation

length of γ :=
∫ b

a
ϕ(γ̇(t))dt ,

and the distance between two points x and y in M is defined as the
infimum of the lengths of all smooth curves joining x and y.

Later in the paper, we shall be studying projective Finsler metrics:
Finsler metrics defined on open convex subsets of RPn for which the
geodesics lie on projective lines. Among the earliest examples of pro-
jective Finsler spaces are the Hilbert geometries.

Hilbert geometries. Let D ⊂ R
n be a bounded, convex, open subset.

Let x and y denote two distinct points on D and let a and b denote the
two points of intersection of the boundary of D with the line passing
through x and y (Figure 1).

Figure 1.
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The distance between x and y is defined by the formula:

d(x, y) :=
1
2

ln
(‖y − a‖
‖x − a‖

‖x − b‖
‖y − b‖

)
.

In many instances, including when the boundary of D is smooth and
quadratically convex, the Hilbert metric on D comes from a Finsler
metric (see [24]).

Finsler geometry from the Hamiltonian viewpoint. Let M be
a Finsler manifold and let ‖·‖x denote the norm at a tangent space TxM .
The Hamiltonian of a Finsler metric is the function H : T ∗M → R

whose value at a covector px is ‖px‖∗x, where ‖ · ‖∗x is the norm dual to
‖ · ‖x. The set {p ∈ T ∗M : H(p) < 1} and its boundary are respectively
called the unit co-disc bundle and the unit co-sphere bundle of M , and
are denoted by D∗M and S∗M .

Definition 2.3. If we denote by α the pullback of the canonical
one-form to S∗M , we define the Reeb vector field , X, by the equations

dα(X, ·) = 0 and α(X) = 1.

The image of an integral curve of X under the Legendre transform—
the map that sends a unit covector px ∈ T ∗

xM to the unique unit vector
vx ∈ TxM such that px(vx) = 1 —is the curve of unit tangent vec-
tors of a geodesic parameterized with unit speed. Moreover, the length
of any segment of this geodesic is given as the integral of α over the
corresponding segment of the integral curve of the Reeb vector field.

Spaces of geodesics. If (M,ϕ) is a Finsler manifold such that its
space of oriented geodesics is a manifold G(M), then this manifold car-
ries a natural symplectic structure. Let S∗M denote the unit co-sphere
bundle of M and let π : S∗M → G(M) be the canonical projection that
sends a given unit covector to the geodesic which has this covector as
initial condition. If i : S∗M → T ∗M denotes the canonical inclusion into
T ∗M and ω0 is the standard symplectic form on T ∗M , there is a unique
symplectic form ω on G(M) that satisfies the equation π∗ω = i∗ω0.

Notice that the space of oriented projective lines in RPn is the Grass-
mannian G+

2 (Rn+1) of oriented planes in R
n+1, while the space of ori-

ented lines in R
n is easily identifiable with the cotangent bundle of Sn−1.

Let M be a Finsler manifold with a smooth manifold of geodesics
G(M). The double fibration

S∗M
π1

����
��

��
��

�
π2

�����������

M G(M),
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where π1 and π2 are the canonical projections, allows us to relate the
metric geometry of M , the symplectic geometry of G(M), and the con-
tact geometry of S∗M . We will now review some simple aspects of the
geometry of the fibrations π1 : S∗M → M and π2 : S∗M → G(M).

Definition 2.4. Let M be an n-dimensional Finsler manifold with
unit co-sphere bundle S∗M and canonical form α. The contact structure
on S∗M is the field of hyperplanes in TS∗M defined by the equation α =
0. An immersed manifold L ⊂ S∗M is said to be Legendrian if its dimen-
sion is n−1 and the form α vanishes on every one of its tangent spaces.

For example, the fibers of the projection π1 are Legendrian. In the
terminology of Arnold (see [12]), the fibration π1 : S∗M → M is a
Legendrian fibration.

We now turn our attention to the fibration π2 : S∗M → G(M). Its
most important property is that it is a line or circle bundle over G(M)
with connection form α and curvature dα = π∗

2ω. In other words, it is
a prequantization of the symplectic manifold (G(M), ω). Other simple
and useful properties are given in the following propositions:

Proposition 2.1. The map a : G(M) → G(M) that sends each
oriented geodesic to the same geodesic with its opposite orientation is
an anti-symplectic involution.

Proof. Note that the involution A that sends every unit covector px

to its opposite −px takes the form α to −α and that π2 ◦A = a ◦ π2. It
follows that

π∗
2a

∗ω = A∗π∗
2ω = A∗dα = −dα.

This implies that π∗
2(−a∗ω) = dα, which in turn implies that −a∗ω = ω.

q.e.d.

Proposition 2.2. If i : L → S∗M is a Legendrian immersion, then
the composite map π2 ◦ i : L → G(M) is a Lagrangian immersion. In
particular, the submanifold of all geodesics passing through a point in
M is Lagrangian.

Proof. Note that the kernel of the differential of the projection π2

is transversal to the contact hyperplanes given by the equation α = 0.
Since the tangent spaces of any Legendrian submanifold are contained in
the contact hyperplanes, it follows that if i : L → S∗M is a Legendrian
immersion, then π2 ◦ i is an immersion. To see that it is a Lagrangian
immersion just compute:

(π2 ◦ i)∗ω = i∗π∗
2ω = i∗ωM = di∗α = 0.

q.e.d.
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Proposition 2.3. If N ⊂ M is a totally geodesic submanifold, then
the set of all geodesics lying on N is a symplectic submanifold of G(M).

Proof. If i : N → M denotes the inclusion, the dual of its differential
i∗x : T ∗

xM → T ∗
x N at a point x ∈ N is a surjective linear map. The

restriction of this map to the unit co-sphere S∗
xM has a fold-type sin-

gularity along a submanifold Σx. Since N is isometrically embedded, i∗x
defines a diffeomorphism between Σx and the unit co-sphere S∗

xN .
Performing this construction at each point of N , we construct an

embedding j : S∗N → S∗M that can be characterized by saying that
if px is a unit covector on N based at x, then j(px) is the unique unit
covector on M based at x for which

j(px) · i∗x(vx) = px · vx, for all vx ∈ TxN.

If αN and αM denote, respectively, the canonical one-forms on S∗N
and S∗M , it is easy to check that j∗αM = αN . Moreover, when N is
totally geodesic, the map j is equivariant with respect to the actions
defined by the geodesic flows. As a result, we have the following com-
mutative diagram:

S∗N
j ��

πN

��

S∗M
πM

��
G(N)

j̃ �� G(M),

where the map j̃ : G(N) → G(M) is the natural embedding (i.e., a
geodesic on N is a geodesic on M). This embedding is symplectic.
Indeed, if ωN and ωM are, respectively, the symplectic forms on G(N)
and G(M), we have that j̃∗ωM = ωN . To verify this, note that

π∗
N (j̃∗ωM) = j∗(π∗

MωM ) = j∗(dαM ) = dαN .

Since ωN is defined uniquely by the equality π∗
NωN = dαN , we must

have that j̃∗ωM = ωN . q.e.d.

For the rest of the section, we restrict our attention to projective
Finsler metrics in R

n and the symplectic forms they induce on the space
of oriented lines of R

n. The reader will have no difficulty in extending
the statements and proofs to projective Finsler metrics defined on gen-
eral open convex subsets of RPn, including RPn itself.

Proposition 2.4. If ω is the symplectic form on the space of oriented
lines induced by a projective Finsler metric on R

n, then ω is admissible
(see Definition 1.1) and its pull-back to the (two-dimensional ) subman-
ifold of oriented lines lying on an arbitrary plane never vanishes.
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Proof. The admissibility of ω follows at once from Propositions 2.1
and 2.2. By Proposition 2.3, the pull-back of ω to the submanifold of
lines lying on a plane (or any affine subspace of R

n) is a symplectic form
and, therefore, never vanishes. q.e.d.

It is not hard to recover the projective Finsler metric from the sym-
plectic form ω. If x and y are two points in R

n and Π is a plane
containing them, set dω(x, y; Π) to be the integral of |ω| over the set of
all oriented lines on Π intersecting the segment xy.

Proposition 2.5. Given two points x and y in R
n and any plane Π

in R
n that contains them, the quantity dω(x, y; Π) equals four times the

Finsler distance between x and y. In particular, dω(x, y; Π) is indepen-
dent of the choice of plane Π.

Proof. Notice that since the metric is projective, the plane Π is totally
geodesic and the distance between x and y in Π equals the distance be-
tween them in R

n. Moreover, by Proposition 2.3, the natural symplectic
form on G(Π) is the pull-back of ω to the submanifold of all oriented
lines lying on Π. We can now use the Crofton formula for Finsler sur-
faces due to Blaschke (see [14] and [2]) to write the distance between x
and y as one-fourth the integral of |ω| over the set of all oriented lines
intersecting the segment xy. q.e.d.

This settles the second part of Theorem 1.

3. Reduction to two-dimensions

In view of Proposition 2.5, to complete the proof of Theorem 1, we
need to show that any admissible symplectic form on the space of ori-
ented lines of R

n is induced by some projective Finsler metric on its
space of geodesics. In this section, we prove the following partial result—
the converse of Proposition 2.4.

Theorem 3.1. Let ω be an admissible symplectic form on the space
of oriented lines of R

n. If the pull-back of ω to the space of oriented
lines lying on an arbitrary plane never vanishes, then ω is the symplectic
form induced by some projective Finsler metric on its space of geodesics.

The proof of this theorem is largely based on Pogorelov’s solution of
Hilbert’s fourth problem in two dimensions in [23] (cf. [5] and [25]).

Let µ be a Borel measure defined on the space G(R2) of oriented lines
in R

2 satisfying the following conditions:
1) The set of all oriented lines passing through an arbitrary point has

measure zero.
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2) The measure is even (i.e., the involution a : G(R2) → G(R2) that
reverses the orientation of lines is measure-preserving).

3) The measure of any open set is positive.
Define the distance dµ(x, y) between two points x and y as the measure
of the set of all oriented lines intersecting the segment that joins them.

Theorem 3.2 (Pogorelov, [23]). The function dµ is the distance
function of a projective Finsler metric on the plane if and only if µ is
smooth and positive. Moreover, every projective Finsler metric on the
plane can be constructed this way.

Proof of Theorem 3.1. Since the pull-back of ω to the space G(Π) of
oriented lines lying on a plane Π never vanishes, the pull-back of |ω| to
G(Π) of is a smooth positive measure. By Theorem 3.2, the function
dω(x, y; Π) defined as the integral of |ω| over the set of all oriented lines
on Π intersecting the segment xy ⊂ Π is the distance function of a
projective Finsler metric ϕπ on Π.

Using the admissibility of ω and Stokes’s formula, it is easy to show
(see [3, p. 18]) that dω(x, y; Π) is independent of the choice of the plane
Π. We may thus define a function ϕ on TR

n by setting ϕ(v) = ϕπ(v)
for any choice of plane Π containing v in its tangent bundle.

Since a norm on a vector space is a Minkowski norm if and only if all
its restrictions to two-dimensional subspaces are Minkowski norms, the
function ϕ defines a Finsler metric on R

n. To verify that ϕ is a projective
Finsler metric, we remark that a continuous distance function d (and, a
fortiori, a Finsler metric) defines a projective metric on R

n if and only if
1) whenever x, y, and z are collinear points with y contained in the

segment xz, d(x, z) = d(x, y) + d(y, z);
2) whenever x, y, and z are not collinear, d(x, z) < d(x, y) + d(y, z).

It follows at once that a metric on R
n is projective if and only if its re-

striction to any plane is projective. It follows that ϕ is projective. q.e.d.

Proposition 2.5 and Theorem 3.1 show that Theorem 1 follows from
Theorem 2. The proof of this last result involves some geometric con-
structions of independent interest that will be presented in the next two
sections.

4. From symplectic forms to distance functions

In this section, we study a classical inverse problem in variational
calculus.

Problem. Given a system of smooth curves on a manifold M such
that through every point and every tangent direction there is a unique
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curve passing through this point in the given direction, find necessary
and sufficient conditions for this system to be the geodesics of some
Finsler metric on M .

In order to describe the main theorem in this section, we first give
formal definitions of the systems of curves and of the generalization of
Finsler metrics that we will be considering.

Definition 4.1. Let M be a smooth manifold and let π : PTM → M
be its projectivized tangent bundle. A path geometry on M is a smooth
foliation of PTM by one-dimensional submanifolds that are transverse
to the fibers PTxM , x ∈ M .

The projection onto M of a leaf of the path geometry will be called a
path. Notice that the paths form a system of smooth curves such that
through every point and every direction, there is a unique curve passing
through this point in the given direction. In what follows, we will also
make use of oriented paths and path segments.

Definition 4.2. We shall say that a path geometry on a manifold
M is tame if it satisfies the following two properties:

1) any two distinct points in M that are sufficiently close determine
a unique path;

2) the set of oriented paths on M obtained from the path geome-
try by providing each path with its two possible orientations is
parameterized by a smooth 2n − 2 dimensional manifold Γ.

Examples of tame path geometries are the geodesic foliations of rank-
one symmetric spaces and Hadamard manifolds (i.e., simply connected
Riemannian manifolds of non-positive sectional curvature). However,
most geodesic foliations are not tame. For example, it will be shown
later that if a path has a self-intersection, the path geometry cannot be
tame.

Whenever we have a tame path geometry, the incidence relation

{(x, γ) ∈ M × Γ : x ∈ γ}
is naturally diffeomorphic to the spherized (or homogeneous) tangent
bundle STM of the manifold M , and we have the double fibration

STM
π1

����������
π2

����
��

��
��

�

M Γ.

In his researches on geodesics and inverse problems in variational
calculus, Busemann (see [16]) abstracted the properties of Finsler spaces
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and defined a more general class of metric spaces which he called G-
spaces or geodesic spaces.

Definition 4.3. A metric space (M,d) is said to be a G-space if it
satisfies the following properties:

1) The space M is locally compact.
2) Given two distinct points x and z, there exists a third distinct

point y for which d(x, y) + d(y, z) = d(x, z).
3) For every point p ∈ M , there is a metric ball B centered at p such

that if x and y are in B, then there exists a point z distinct from
x and y such that d(x, y) + d(y, z) = d(x, z).

4) If x, y, z1, and z2 are points such that

d(x, y) + d(y, z1) = d(x, z1) = d(x, y) + d(y, z2) = d(x, z2),

then z1 = z2.

Property (2) states that the metric is intrinsic: the infimum of the
lengths of all curves joining a pair of points equals the distance be-
tween them. Property (3) implies that geodesic segments can be locally
extended, while property (4) implies that the extension of a geodesic
segment is unique.

Roughly speaking, the main result in this section is a sufficient con-
dition for a tame path geometry to be the “geodesic foliation” of a
G-space.

Theorem 4.1. Let M be smooth manifold of dimension greater than
two endowed with a tame path geometry and let Γ denote its parameter
space. If there exists a symplectic form on Γ such that the submanifold
of all paths passing through an arbitrary point in M is Lagrangian, then
the system of paths in M is the system of geodesics for a G-space metric
on M .

Later in this section, it will be shown that if M is a Finsler manifold
with manifold of geodesics G(M) = Γ and ω is the induced symplectic
form on G(M), then the constructed metric is the Finsler metric on M .

The motivation for the proof of Theorem 4.1 in terms of the Hofer
metric on the space of Lagrangian submanifolds of a symplectic manifold
has already been given in the introduction. However, the proof below is
completely elementary and only makes use of the following two classical
results of Whitehead and Weinstein:

Definition 4.4. Let M be a manifold provided with a path geometry.
An open set V ⊂ M is said to be convex if for any two points in V ,
there is a unique path segment joining them and lying entirely inside V .
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Theorem 4.2 (Whitehead, [27]). If M is a manifold provided with
a path geometry, then every point in M has a convex neighborhood.

Theorem 4.3 (Weinstein, [26]). If L is an embedded Lagrangian
manifold of a symplectic manifold (Γ, ω), then there is a symplectomor-
phism between a tubular neighborhood of L and a tubular neighborhood
of the zero-section in T ∗L that takes L to the zero-section.

Using Whitehead’s theorem, we can see that tame path geometries
are really quite special.

Proposition 4.1. If Γ is the parameter space of a tame path geometry
on M , then

1) all paths are simple;
2) for every point x ∈ M , the submanifold x̂ of all oriented paths

passing through x is an embedded sphere in Γ;
3) whenever two points x and y are sufficiently close, then x̂ and ŷ

intersect in precisely two points.

Proof. Suppose a path γ has a double point x. If V is a sufficiently
small convex neighborhood around x, there are pairs of points on γ
that lie on two paths. One of the paths is γ and the other contains the
unique path segment in V that passes through both points (Figure 2).
Since this violates the first condition in Definition 4.2, every path must
be simple.

Figure 2.

To prove (2), we first notice that x̂ is immersed. Indeed, if π1 and π2

are the canonical projections of {(x, γ) ∈ M × Γ : x ∈ γ} onto M and
Γ, then x̂ is the projection of π−1

1 (x) onto Γ. Since the kernels of the
differentials of π1 and π2 are transversal, it follows that x̂ is immersed.
Statement (1) implies that this immersion is injective.

Statement (3) is merely a reformulation of the hypothesis. q.e.d.
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For the rest of the section, we assume that M and Γ satisfy the hy-
potheses of Theorem 4.1. The first step in the construction of the G-
space metric on M is to define an open covering of M and an intrinsic
metric on each open subset Vx of the covering such that the geodesics
for this metric coincide with the path segments lying in Vx.

Lemma 4.1. There exists an open covering of M that associates to
every point x ∈ M an open neighborhood Vx with the following proper-
ties:

1) the set Vx is convex;
2) any two distinct points in Vx determine a unique path;
3) there exists a symplectomorphism Ψx between a tubular neighbor-

hood Ux of x̂ in Γ and a tubular neighborhood of the zero-section
in T ∗x̂ that takes x̂ to the zero-section and such that if y belongs
to the closure of Vx, then ŷ ⊂ U and Ψx(ŷ) ⊂ T ∗x̂ is the graph of
the exterior differential of some smooth function fx

y on x̂.

Proof. From Theorem 4.2 and the tameness of the path geometry, it
is clear that around every point x, we can find an open set Vx satisfying
the first two properties. To see that we can choose Vx to satisfy the
third property as well, we use Theorem 4.3 and notice that if a point
y is sufficiently close to x, the Lagrangian sphere ŷ is C1 close to x̂.
Therefore, Ψx(ŷ) ⊂ T ∗x̂ is the graph of a closed 1-form. Since x̂ is a
sphere of dimension greater than one, it is simply connected and the
closed 1-form is the exterior differential of some smooth function. q.e.d.

On each Vx, we define a metric by setting

δx(y, z) :=
1
2

(
max(fx

y − fx
z ) − min(fx

y − fx
z )

)
.

In other words, we consider the map y �→ fx
y as a mapping from Vx to

the space of smooth functions on x̂ modulo constants and pull-back the
distance function ∆(f, g) := (max(f − g) − min(f − g)) /2. The metric
∆ comes from the norm ‖f‖ = (max(f) − min(f)) /2 that symplectic
geometers will recognize as the local model for the Hofer norm. Like
in many other normed spaces, the geodesic segment joining two given
points is far from being unique. However, the following simple lemma
makes it easy to verify if three points belong to a geodesic segment.

Lemma 4.2. Let f and g be two continuous functions on a compact
topological space X. The equality

max(f + g) − min(f + g) = max(f) − min(f) + max(g) − min(g)

holds if and only if there exist points x and y in X for which max(f) =
f(x), max(g) = g(x), min(f) = f(y), and min(g) = g(y).
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Proposition 4.2. The metric space (Vx, δx) is a length space where
the geodesics coincide with the prescribed system of curves on Vx ⊂ M .

Proof. A simple way of verifying whether a locally compact metric
space is a length space is to see whether for any two points u and v there
exists a third point w such that the distance between u and v equals
the distance between u and w plus the distance between w and v (see
[16, p. 29]).

In our case, let u and v be two points in Vx and let w be some point
in the unique curve segment joining u and v. Because the spheres û, v̂,
and ŵ intersect at the same two points, the functions fx

v − fx
u , fx

v − fx
w,

and fx
w − fx

u have the same two critical points a and b in x̂. Note that
unless w coincides with u or v, none of these functions is constant.

Without loss of generality, assume that max(fx
v −fx

u ) = fx
v (a)−fx

u (a).
By continuity, and because there are only two critical points, if w is
close to u, we have that max(fx

v − fx
w) = fx

v (a) − fx
w(a). Moreover, as

we move w from u to v along the path segment that joins them, this
cannot change since fx

v − fx
w is never constant. The same argument

applies to fx
w − fx

u and we have that for any w between u and v

max(fx
v − fx

u ) = max(fx
v − fx

w) + max(fx
w − fx

u ).

Since we have the analogous statement for the minima, we conclude
that δx(u, v) = δx(u,w) + δx(w, v).

This argument not only proves that (Vx, δx) is a length space, but
also that the path segment joining u and v is a geodesic segment for the
metric. To complete the proof, we must show that any geodesic segment
lies on a path. In order to do this, we prove that if w is not in the curve
segment joining u and v, then δx(u, v) < δx(u,w) + δx(w, v).

We distinguish two cases: either w is not on the path passing through
u and v or w lies on this path, but does not belong to the segment that
joins u and v. In the first case, the Lagrangian spheres û, v̂, and ŵ do
not intersect in the same two points and, by Lemma 4.2, we have the
strict triangle inequality. In the second case, the Lagrangian spheres û,
v̂, and ŵ do intersect in the same two points, but it is easily ascertained
that while fx

v − fx
u reaches its maximum at a ∈ x̂, either fx

w − fx
u or

fx
v − fx

w reaches its maximum at b. Again, Lemma 4.2 implies that we
have the strict triangle inequality. q.e.d.

This finishes the first step of the proof of Theorem 4.1. The second
step consists in piecing together the metrics we just constructed on the
elements of the open cover of M to obtain, first, a length structure and,
then, a G-space metric on M .
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Proposition 4.3. If x and y are two points on M for which Vx ∩ Vy

is not empty, then δx and δy agree on the intersection.

The proof follows from a useful symplectic interpretation of the dis-
tance function δx. If u and v are in Vx, the Lagrangian spheres û and
v̂ are in a tubular neighborhood Ux of x̂ that is symplectomorphic to
a neighborhood of the zero-section of the cotangent of the (n − 1)-
dimensional sphere. Remark that since n > 2, the set Ux is simply
connected.

Lemma 4.3. Let σ be any simple closed curve in Ux formed by con-
catenating a curve σu in û and a curve σv in v̂ that join the two points of
intersection of these Lagrangian spheres. The distance δx(u, v) is equal
to one-half the absolute value of the symplectic area of any disc in Ux

whose boundary is σ.

Proof. Let Ψx : Ux→T ∗x̂ be the symplectic embedding of Lemma 4.1.
The map Ψx takes û and v̂ into Lagrangian submanifolds in T ∗x̂ that
are, moreover, graphs of the exterior differentials of smooth functions fx

u

and fx
v on x̂. The two intersection points of Ψx(û) and Ψx(v̂) correspond

to the two critical points of fx
u − fx

v . Let us denote by a the critical
point where the minimum is attained and by b, the critical point where
the maximum is attained.

Let D be a disc in Ux with boundary σ and oriented so that its
symplectic area is non-negative. In the computation below, σ is oriented
as the boundary of D, α0 and ω0 are the canonical one and two-forms
on T ∗x̂, γu and γv are the images of σu and σv under Ψx, and π is the
canonical projection from T ∗x̂ to x̂.∫

D
ω =

∫
Ψx(D)

ω0 =
∫

γu∪ γv

α0

=
∫

π(γu)
dfx

u +
∫

π(γv)
dfx

v

= fx
u (b) − fx

u (a) − (fx
v (b) − fx

v (a)) = 2δx(u, v).

q.e.d.

Proof of Proposition 4.3. Let u and v be two points Vx ∩ Vy, and let
Ux and Uy be the tubular neighborhoods of x̂ and ŷ that appear in
Lemma 4.1. By Lemma 4.3, if σ is any simple closed curve formed by
concatenating a curve in û and a curve in v̂ that join the two points
of intersection of these Lagrangian spheres, the distances δx(u, v) and
δy(u, v) are both equal to one-half the absolute value of the symplectic
area of any disc in Ux ∩ Uy whose boundary is σ. q.e.d.
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By Proposition 4.2, we have an open covering of M together with a
length structure—a way of measuring the length of curves—�x defined on
each set Vx of the covering, and by Proposition 4.3, the length structures
coincide on the intersections Vx∩Vy. Therefore, there is a unique length
structure � on M which restricts to �x on Vx for all x ∈ M . This allows
us to define a pseudo-metric d on M by setting

d(x, y) := inf{�(σ) : σ is a smooth curve joining x and y}.
The following proposition concludes the proof of Theorem 4.1.

Proposition 4.4. The pseudo-metric d defined above is actually a
metric, and (M,d) is a G-space. Moreover, the geodesics in (M,d)
coincide with the prescribed system of curves on M .

Proof. Let us first prove that d is a metric. Let x and y be two
distinct points on M and let V ′

x ⊂ Vx be a neighborhood of x whose
closure is compact and does not contain y. Since δx is continuous on
Vx × Vx and the boundary of V ′

x is compact, we have that the distance
between it and x is a positive number ε. Since any continuous curve
between x and y must cut the boundary of V ′

x, the length of this curve
must be at least equal to ε > 0 and hence, the distance between x and
y is strictly positive.

Now, we show that if two points u and v are sufficiently close to a
point x, then d(u, v) = δx(u, v). In view of Proposition 4.2 and the
locality of the definition of geodesics, this implies that the geodesics of
(M,d) are precisely the paths on M .

Let V ′
x ⊂ Vx be a neighborhood of x such that, for the metric δx, its

diameter is strictly less than twice the distance between its boundary
and that of Vx. If u and v are in V ′

x, then the length of any continuous
curve joining these two points and leaving Vx is greater than δx(u, v).
Since (Vx, δx) is a path metric space, we have that the infimum of the
lengths of all curves joining u and v is δx(u, v) and hence, d(u, v) =
δx(u, v).

Since Definition 4.3 immediately implies that any locally compact
length space whose geodesics agree with the paths of a path geometry
is a G-space, it follows that (M,d) is a G-space. q.e.d.

Application to Finsler geometry. We now show that when the
path geometry is the system of geodesics of a Finsler metric on M and
ω is the induced symplectic form on the space of geodesics G(M) = Γ,
then the metric d given by Theorem 3 is the Finsler metric on M . This
is a generalization of Blaschke’s Crofton formula for two-dimensional
Finsler spaces (see [14] and [2]).
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Theorem 4.4. Let M be a Finsler manifold whose space of geodes-
ics is a smooth manifold G(M). If every two points of M that are
sufficiently close determine exactly one geodesic and if ω is the nat-
ural symplectic form on G(M), then the metric d constructed from ω in
Theorem 4.1 is the original Finsler metric on M .

Proof. It is sufficient to show that on each Vx, the Finsler metric
agrees with δx. This implies that the length structure agrees with that
of the Finsler metric and, therefore, the metrics agree.

Recall the symplectic interpretation of δx given in Lemma 4.3. If σ is
a loop made up of two simple curves on û and v̂ joining their points of
intersection, and D is any disc with boundary equal to σ, then δx(u, v)
is the absolute value of the integral of ω over D. We can lift σ to a loop
σ′ on the unit co-sphere bundle of Vx by concatenating the following
curves (Figure 3):

1) the Legendre transforms of the unit tangent vectors of all geodesics
passing through u and belonging to σ;

2) the Legendre transforms of the unit vectors tangent to the unique
oriented geodesic going from u and v;

3) the Legendre transforms of the unit tangent vectors of all geodesics
passing through v and belonging to σ;

4) the Legendre transforms of the unit vectors tangent to the unique
oriented geodesic going from v and u.

u v

Figure 3.

If D′ is a disc on the unit co-sphere bundle of Vx spanning σ′ and π
is the standard projection onto the space of geodesics, then

2δx(u, v) =
∫

π(D′)
ω =

∫
D′

π∗ω =
∫

D′
dα =

∫
σ′

α.

Notice that the integral of α over the curves (1) and (3) is zero, while
its integral over the curves (2) and (4) equals the length of the geodesic
segment. We have then that δx(u, v) is the Finsler distance between u
and v. q.e.d.

Positivity properties of admissible two-forms. To finish the
section, we apply Theorem 4.1 to the case where M = R

n and Γ =
G(Rn) is the space of oriented lines in R

n. In this case, the metric
associated to an admissible symplectic form on G(Rn) is projective.
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The next result is a key element in proving that the metric is also a
Finsler metric.

Theorem 4.5. If ω is an admissible symplectic form on G(Rn),
n > 2, and Π ⊂ R

n is a plane, then the pull-back of ω to the (two-
dimensional ) submanifold of all oriented lines lying on Π never changes
sign nor vanishes on an open set.

Note that the set of all oriented lines on Π is a cylinder and that
the set of all lines intersecting a line segment is the union of two closed
topological discs that intersect in precisely two points (see Figure 4).

Figure 4.

In what follows, we will use the term line-disc to denote each of
these topological discs, and we will say that a line-disc is small if the
line segment corresponding to it lies in one of the sets of the cover Vx

guaranteed by Lemma 4.1.

Lemma 4.4. There is an orientation on G(Π) such that the integral
of ω over any line-disc is positive.

Proof. It is enough to look at small line-discs. Indeed, any line seg-
ment can be partitioned into arbitrarily small line segments and the
integral of ω over the original line-disc equals the sum of the integrals
of ω over the small line-discs corresponding to these segments.

Lemma 4.3 implies that the integral of ω over a small line-disc corre-
sponding to a segment xy is, up to a sign, the quantity 2d(x, y), and is
thus different from zero. Since any two small line-discs can be embed-
ded in a continuous one-parameter family of line-discs, the orientation
may be fixed so that the integral of ω over any two small line-discs is
positive. q.e.d.

From now on, G(Π) is oriented so that the integral of ω over all line-
discs is positive. However, not every open subset of G(Π) contains a line-
disc and, therefore, this is not enough to prove Theorem 4.5. To remedy
the situation, we introduce line-triangles: sets of lines intersecting two
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sides of a given triangle in Π in a given order (see Figure 5). A line-
triangle in G(Π) is said to be small if its corresponding triangle in Π
lies in one of the sets of the open covering Vx, x ∈ Π.

Figure 5.

It is easy to see that the pull-back of ω to G(Π) never changes sign nor
vanishes in an open set if and only if the integral of ω over any small line-
triangle is different from zero. Therefore, the following lemma concludes
the proof of Theorem 4.5.

Lemma 4.5. If ω is an admissible symplectic form, its integral over
any sufficiently small line-triangle in G(Π) is positive.

Proof. Let uvw be a triangle in Π ∩ Vx for some x ∈ Π and consider
the four small line-triangles T1, T2, T3, and T4 represented by Figure 6.

T1 T2 T3 T4

w u

v

w u

v

w u

v

w u

v

Figure 6.

By Lemma 4.3,

2d(u, v) =
∫

T2

ω +
∫

T4

ω,

2d(v,w) =
∫

T1

ω +
∫

T3

ω,

2d(u,w) =
∫

T3

ω +
∫

T4

ω.
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Using the strict triangle inequality for d, we have that

0 < 2d(x, y) + 2d(y, z) − 2d(x, z) =
∫

T1

ω +
∫

T2

ω

= 2
∫

T1

ω.

In the last equality, we used that ω is odd and that the triangle T2 is
obtained from T1 by reversing the orientation of the lines. q.e.d.

5. A characterization of admissible symplectic forms

In this section, a detailed study of the generalized conformal structure
of the Grassmannian G+

2 (Rn+1) of planes in R
n+1 will allow us show that

the pull-back of an admissible symplectic form to the space of all lines
lying on a plane never vanishes. This completes the proof of Theorem 2.

Throughout this section, we consider R
n as RPn minus a hyperplane

at infinity, and the space of oriented lines in R
n as an open subset of

G+
2 (Rn+1).
Recall that the tangent space to G+

2 (Rn+1) at a plane P can be iden-
tified with the space of linear transformations from P to its orthogonal
complement P⊥. In fact, a whole neighborhood of P in G+

2 (Rn+1) can
be identified with this vector space since any plane sufficiently close to
P is the graph in P ⊕P⊥ = R

n+1 of some linear transformation from P
to P⊥. By choosing bases for P and P⊥, we may represent the tangent
space TP G+

2 (Rn+1) as the space of 2 × (n − 1) matrices(
q1 . . . qn−1

p1 . . . pn−1

)
.

Definition 5.1. The generalized conformal structure on the Grass-
mannian G+

2 (Rn+1) assigns to every plane P ∈ G+
2 (Rn+1) the incidence

cone in TP G+
2 (Rn+1) that consists of all rank-one linear transformations

from P to P⊥.

The incidence cones are made up of two types of linear subspaces,
the α-planes and the β-planes.

Given real numbers λ1 and λ2, we define the n-dimensional subspace

H(λ1,λ2) :=
{(

λ1q1 . . . λ1qn−1

λ2q1 . . . λ2qn−1

)
: q1, . . . , qn−1 ∈ R

}
⊂ TP G+

2 (Rn+1).

These are the α-planes. Note that H(λ1,λ2) depends only on the quotient
of λ1 and λ2. In other words, the H(λ1,λ2) define a projective line of n-
dimensional subspaces in TP G+

2 (Rn+1). Since all the matrices in H(λ1,λ2)

have rank one, the subspaces are all inside the incidence cone.
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Describing the β-planes is equally simple: for real numbers λ1, . . . ,
λn−1, define the two-dimensional subspace

K(λ1,...λn−1) :=
{(

λ1q . . . λn−1q
λ1p . . . λn−1p

)
: q, p ∈ R

}
⊂ TP G+

2 (Rn+1) .

Note that the set of β-planes in TP G+
2 (Rn+1) is parameterized by a

projective space of dimension n − 2.
An alternate, projective, description of α-planes and β-planes is as

follows: if x is a point in RPn and l is an oriented line passing through
x, then Tlx̂ is an α-plane. Similarly, if Π ⊂ RPn is a two-dimensional
subspace and l is an oriented line lying on Π, then TlG(Π) is a β-plane.

Note that we can now characterize admissible two-forms on the space
of oriented lines of R

n (or, more generally, RPn) as differential two-forms
that are odd, closed, and that vanish on every α-plane.

Two-forms vanishing on α-planes. We shall now describe all
two-forms ω ∈ Λ2(TP G+

2 (Rn+1)) which vanish on the subspaces of the
form H(λ1,λ2), λ1, λ2 ∈ R. In the computations that follow, we identify
the space of 2 × (n − 1) matrices with R

2n−2 by using the coordinates
q1, . . . , qn−1, p1, . . . , pn−1 as we have been doing in the previous para-
graphs.

Proposition 5.1. A 2-form ω ∈ Λ2(TP G+
2 (Rn+1)) vanishes on all

α-planes if and only if it is of the form ω =
∑

bijdqi∧dpj with bij = bji.
In particular, such ω is non-degenerate if and only if the matrix (bij) is
invertible.

Proof. A general 2-form ω ∈ Λ2(TP G+
2 (Rn+1)) has the form

ω =
∑

aijdqi ∧ dqj +
∑

bijdqi ∧ dpj +
∑

cijdpi ∧ dpj ,

with aij = −aji and cij = −cji. If ω vanishes on the subspaces of the
form

H(λ1,0) :=
{(

λ1q1 . . . λ1qn−1

0 . . . 0

)
: q1, . . . , qn−1 ∈ R

}
,

then
∑

aijdqi ∧ dqj = 0 and, therefore, the coefficients aij are all equal
to zero. Similarly, if ω vanishes on the subspaces of the form H(0,λ2),
then the coefficients cij are all equal to zero.

Finally, if ω is to vanish on a subspace of the form H(λ1,λ2) with
neither λ1 nor λ2 equal to zero, then

∑
bijdqi ∧ dpj = 0. This implies

that bij = bji. q.e.d.

We shall denote the subspace of Λ2(TP G+
2 (Rn+1)) consisting of those

2-forms which vanish on all α-planes by Λ−
P . The previous proposition
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shows that the dimension of this subspace equals n(n−1)/2. The bundle
over G+

2 (Rn+1) whose fiber over every point P is Λ−
P will be denoted

by Λ−. Clearly, an admissible 2-form is a section of this bundle. If the
admissible 2-form is symplectic, then it is a nowhere-vanishing section.

We shall now prove that an admissible 2-form which does not vanish
on β-planes is necessarily symplectic.

Proposition 5.2. The form ω :=
∑

bijdqi∧dpj ∈ Λ−
P never vanishes

on a β-plane if and only if the matrix (bij) is definite. Therefore, if an
admissible two-form never vanishes on a β-plane, it is symplectic.

Proof. Let us evaluate the form ω on a basis of the β-plane
K(λ1,...,λn−1).

ω

((
λ1q . . . λn−1q
λ1p . . . λn−1p

)
,

(
λ1q

′ . . . λn−1q
′

λ1p
′ . . . λn−1p

′

))
=

∑
bij(λiqλjp

′ − λipλjq
′)

= (qp′ − pq′)
∑

bijλiλj .

Since the vectors are linearly independent the quantity qp′ − pq′ is not
zero and the quantity

∑
bijλiλj is non-zero for all non-zero values of

(λ1, . . . , λn−1) if and only if the matrix (bij) is definite. q.e.d.

The index of the matrix (bij) does not depend on the choice of bases
on the plane P and its orthogonal complement P⊥. In particular, if
ω is a non-degenerate 2-form that is also a section of Λ− over some
connected open subset U ⊂ G+

2 (Rn+1), then the index of the matrix
(bij) is the same at all points P ∈ U . It is thus natural to propose the
following definition:

Definition 5.2. Let ω be a non-degenerate 2-form that is also a
section of Λ− over a connected open subset U ⊂ G+

2 (Rn+1). The index
of ω is the index of the matrix (bij) at any point P ∈ U . The two-form
ω will be called definite or indefinite depending on whether the matrix
(bij) is definite or not.

It is easy to construct admissible symplectic forms on open subsets of
G+

2 (Rn+1) that are not definite. However, this is not possible if the open
subset is connected and contains the set of all lines passing through a
given point in RPn.

Theorem 5.1. Let U ⊂ G2(Rn+1) be a connected open subset that
contains the set of all oriented lines passing through a point x ∈ RPn.
If ω is an admissible symplectic form defined on U , then ω is definite.

Proof. Without loss of generality, we may assume that U is the set of
oriented lines passing through an open convex subset M of RPn. The
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strategy of the proof consists in showing that if ω is indefinite, then
there exists a plane Π passing through M and such that the pull-back
of ω to the manifold of all lines passing through M and lying on Π either
changes sign or vanishes on an open set. According to Theorem 4.5, this
cannot be the case if ω is symplectic.

Consider the double fibration

F
π1

����
��

��
�� π2

���
��

��
��

U B,

where B is the set of all projective planes in RPn that contain a line
in U , and F denotes the incidence relation {(l,Π) ∈ U × B : l ⊂ Π}.
Remark that B is an open subset of the Grassmannian of projective
planes in RPn, G3(Rn+1).

If ω is an indefinite 2-form on U , we define N ⊂ F to be the set of
all pairs (l,Π) such that ω vanishes on the β-plane TlG(Π). From the
proof of Proposition 5.2, it follows that N is a smooth hypersurface and
that N ∩ π−1

1 (l) is a non-degenerate projective quadric for each l ∈ U .
Notice that if Π ∈ B and π−1

2 (Π) intersects N transversely at some
point, then the pull-back of ω to G(Π) ∩ U changes sign. If π−1

2 (Π) is
contained in N , then the pull-back of ω vanishes on G(Π)∩U . Therefore,
in order to prove the theorem, it is enough to show that if no fiber of π2

intersects N transversely, then there exists at least one that is wholly
contained in N .

If no fiber is transverse, we may consider the distribution of tangent
planes on N given by (l,Π) �→ T(l,Π)π

−1
2 (Π). Since this distribution is

integrable in F ⊃ N (its leaves are the fibers of π2), it is integrable in
N . It follows that there is a fiber of π2 that lies completely on N and
this finishes the proof. q.e.d.

Proof of Theorem 2. Let ω be an admissible symplectic form on the
space G(Rn) of oriented lines of R

n. By the previous theorem, ω is a
definite form. Applying Proposition 5.2, we have that ω never vanishes
on a β-plane and, therefore, the pull-back of ω to the submanifold of
oriented lines lying on a plane never vanishes.

On the other hand, if ω is an admissible two-form on G(Rn) such that
its pull-back to the submanifold of oriented lines lying on a plane never
vanishes, then it never vanishes on a β-plane and, by Proposition 5.2,
it is symplectic. q.e.d.
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[3] J.C. Álvarez Paiva, Anti-self-dual symplectic forms and integral geometry, in
‘Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis’, 15–
25, Contemp. Math., 251, Amer. Math. Soc., Providence, RI, 2000, MR 1771256,
Zbl 0988.53037.
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